NOTE ON THE PROBABLE GEOGRAPHICAL DISTRJBUTION OF A SPIDER BY THE TRADE WINDS.

By liev. Ilenty C. Mcc'ook.

While examining and elassifying the collection of spiders in the Academy of Natural Sciences of Pliladelphia, I discovered a mumber of specimens of the large laterigrade Sarotes venatorius, Linn., from rarions localities, as represented upon the accompanying tables and chart (Fig. 1). Starting with the specimens in my private collection, the line of distribution was traced from Santa Cruz, Virgin Isles, to Cuba, to Florida, across Central America, Y'ucatan and Mexico, across the Pacific Ocean by way of Sandwich Islands, Japan, and Ioo-Choo Istands, and thence across the continents of A sia and Afriea to Liberia. The line thms indicated extents from the extreme eastern limit of North America to the extreme western coast of Africa, thus girdling the globe, with the exception of 54° of longitude. 'lhis excepted area expresses sul)stantially the width of the Atlantic Ocean.

It occurred to me when this fact became apparent, that this line of distribution is within the belt of the North 'rade Winds; and further, that there might be some connection between the two facts and the fact that the laterigralle spiders, to which group this animal belongs, are among those which are most addicterl, in the earlier stages of growth, to the interesting habit of migrating from point to point. 'This is done by means of fine threads, emitted from the spinnerets in sufficient bulk to overcome the speeific gravity of the body. In other words, they belong to the ballooning species. ${ }^{1}$ 'The suggestion which thus arose led me to refer to a competent anthority as to the general conrse and limits of the North Trades. These are roughly indicated in the charl, Fig. 1, by the two upper lines of arrows, marked (at the ends) $A A$ and B B. In the Atlantic Ocean the North 'Irade Winds prevail between latiturle $9^{\circ} \mathrm{N}$. and $30^{\circ} \mathrm{N}$.; in the Pacific lsetween $9^{\circ} \mathrm{N}$. and $26^{\circ} \mathrm{N}$. We now may turn to the chart in which the following geographical points (shown by a dot and figures) are represented by our spider. The specimens which have been examined, in the

[^0]Academy and my own collections, whose habitats are personally known, are marked by an asterisk (*). The species is credited to the other localities named on the authorities given therewith.

A comparison of this table with the chart will at once show that the dotted lines in the latter, which indicate the limits of the geographical belt over which (so fir as the specimens in hand and described can determine) Sarotes venatorius is distributed, correspond, with remarkable general exactutude, with the belt over which the North Trades blow. It is not, therefore, an improbable conjecture that this distribution has been accomplished by means of those winds and the habit of aerial flight above referred to. It is, of course, supposable that commerce, following largely the same belt. may have originated or aided this distribution. But it is hardly necessary to resort to this hypothesis, when there is one quite as probable, and wholly natural, and operative before the general diffusion of inter-continental commmnication by ships. This last-named condition the facts in the history of the spider seem to require.

Some of these facts are, (1) the early diseovery of the species as already widely distributed; (2) its presence at so many different insular points nearly or altogether contemporaneous with their first visits by commercial nations; (3) the existence of the species or its close allies among the fauma of the tropical interiors of continents far distant from coast lines; (4) and finally the variations, chiefly in color, which have been observed, and which would seem to require for their development a longer period than that which has transpired since the commencement of commercial commn-. nication with the localities in which the variations have been wrought. While one may not conclude with absolnte certainty from these facts, they certainly warrant the theory that the Huntsman (venatorius) spider has become cosmopolitan by the action of nature independent of the aid of man.

I was so impressed by the abore chain of facts, and so confident of the inference therefrom, that I ventured to predict that corresponding results would follow a comparison of specimens collected from all other quarters; that is to say, they would be found to lie within the belt of the North or South Trade Winds. The only specimens at hand were those cited above, and from Zulnland and Surinam. But I was enabled to pursue the matterfur-
Fig. 1.-Chart of Distribution of Sarotes vematorius.

$A A, B B$, belt of North 'Trades. (C' $C, D I$, belt of suthla Trades.
ther by reference to the locations of various specimens given in the descriptions of a number of natura'ists. I was greatly aided in this by references kindly sent me by Mr. Wm. Holden. Some of the localities thus obtained have been tabulated above, and others were found to correspond with the points represented by specimens examined. So far then the conjecture was verified.
'The two lower arrow lines in the chart, $C C$ and $D D$, give a general view of the course and limits of the South Trades, which prevail in the Atlantic Ocean between latitude $4^{\circ} \mathrm{N}$. and $22^{\circ} \mathrm{S}$., and in the Pacific between latitule $4^{\circ} \mathrm{N}$. and $23 \frac{1^{\circ}}{}{ }^{\circ} \mathrm{S} .{ }^{1}$ It is of course understood that these limits are not stationary, but follow the sum, moving northward from Jannary to Jnne, and sonthward from July to December; an oscillation which is also indicated in the zone of distribution. They are, however, substantially as above given, and may be compared with the following table, which shows the southern geographical distribution of this species according to the authorities cited therein.

Table of Distribution North of the Equator.

Locality.	Latitude.	Longitude (Gr.).	Authority.
1. Palmyra Island,	$6 \bigcirc \mathrm{~N}$.	1680 W.	*
2. Pelew Islands,	\%-8० N.	1340 E.	L. Koch.
3. Loo-Choo Islands,	$2.5-290 \mathrm{~N}$,	$128 \supset \mathrm{E}$.	*
4. Japan,	$30-400 \mathrm{~N}$.	$130-1400 \mathrm{E}$.	*
5. Nicobar Islands,	$6 \bigcirc-100 \mathrm{~N}$.	$96-97$ E.	Böck.
6 Tranquebar, India,	$12 \bigcirc \mathrm{~N}$.	S00 E.	Fabricins.
7. Liberia, Africa,	$5 \bigcirc-9 \bigcirc$ N.	100 W.	*
8. Senegrl, Africa,	170 N.	$16 \bigcirc \mathrm{~W}$.	Walckenacr.
9. Martinique, N. America,	1.0 N .	610 W.	
10. Santa Cruz,	180 N.	650 W.	*
11. Jamaica,	180 N	$7 \% 5 \mathrm{~W}$.	Walckenaer.
12 Cuba,	$200-230 \mathrm{~N}$.	740-8.50 W.	*
13. Florida,	300 N .	810 W .	*
14. Yncatan,	$20 \bigcirc \mathrm{~N}$.	$820-910 \mathrm{~W}$.	*
15. Mexico, Jalapa,	$20 \bigcirc \mathrm{~N}$.	975 W.	*
16. Calilornia,	?	1090-11\% W.	L. Koch.
17. Oahu, Sand. Islands,	200 N.	$1550-1600 \mathrm{~W}$.	*

[^1]
Truble of Mistribution South of the Equalor．

Loocality．	Latitule．	Longitad．（（ir．）．	Inlurery．
1．Viti Ifevir，Ferjee Islanels，	18 S．	180 ，W	1．Kuch．
2．N゙ew Caterlonia，	20 2． 2 S．	16i3）－162－12．	
3．Sinhey，Anstralia，	3：3）」－	$15 川$ E．	Bück．
4．Anstralia，	11 －30	10．s－11．5 E．	1．Korch．
T．	～N．	1040 F	W：alck．
6．Vanzibur，Africa，	6 ¢	40	Gerstarekers．
\％．S．E．Equatorial	10－20う S．（\％）		Bhackwall．
8.	20 S．	If E ．	Wialckenatr．
9．Mitharascar，	$\because 6$	$433-505 \mathrm{E}$ ．	Vinson．
10．Zulu－land，	20 S ．	$28, \mathrm{E}$ ．	＊
nambuco，	7 S ．	37.15.	
azil，		3%－\％ $0 \cup$ W．	Simon，Wa
）Janciro，	$23 \bigcirc \mathrm{~S}$ ．	500 W ．	Walck．
rinam，	（i）N．	\％ijo W．	＊
lparaiso，	$3: 3$.	$70 \% \mathrm{~W}$	．Koch．
hiti，IInaheine．Suc．I	18－s．	1500 W ．	．Koc
arotonera，Cook＇s Isls．	2 ¢ S．	1620 W ．	，
，Navigat	$1: 3 \frac{1}{2}-14 \frac{1}{2} \bigcirc \mathrm{~S}$ ．	16－17：3 W．	،
Tongatabu，Friendly Is．	20 S ．	$1 \% \sim-1 \% \%$ W．	

This table shows a distribution corresponding with the limits of the South Trades，with，in three cases，viz．．Sidney（3）．Suri－ nam（14），and Valparaiso（15），a slight oscillation in atcord with a fact above stater．＇Thus was entirely fulfilled the expectation with which I entered upon its preparation．It might with equal confidence be predicted that Saroles venatorius may be found dis－ tributer throughout the South Pacific Islands within the same general belt；moreover，that it may he fonnd among the fanta of the chain of small islands between the Sandwich Islands and A sia，viz．，Philadelphia，Drake amd Massachusetts lslands，Anson and Magellan Archipelagors；also of the Cape Verde and St． Helema Islands，ofl＇the west coast of Africa．＇These have all doubtless been stations in the line of migration，the latter across the Itlantic Ocean as the Autilles have been；the former across the I＇atific，as the Sandwich Islands，Loo－Choo Island，and Japan have heens and as Manritins and Madagascar Islands hare been across the Indian Ocean．Perhaps a more diligent seareh might even now prove that this cosmopolitan species has already been collected at some of the above points．${ }^{1}$
${ }^{1}$ It will be observed that the tables slow that the missing points in the South Pacific Islands have been actually bridged over．After the presenta－

There seems nothing improbable in the theory suggested to explain the series of facts here presented. There are not, indeed, many recorded oliservations of the distances to which spiders are carried out to sea in their aeronantic flights. But before a strong, steady wind, or in cases of storms, it is possible that the greatest distances which appear in the tables could be overcome. An observation of Mr. Darwin is the only one in point to which I can refer. ${ }^{1}$ At the distance of sixty miles from land, while the Beagle was sailing before a steady, light breeze, the rigging was covered with vast numbers of small spiders with their wehs. The little spider, when first coming in contact with the rigging, was always seated upon a single thread. While watching some that were suspended by this filament, the slighest breath of air was found to bear them ont of sight. I have observed similar single-threaded "balloons" sailing at a considerable height above the surface of the earth, and know no reason why, with a favorable breeze, they might not have been carried hondreds of miles. That they were carried at least sixty miles, as Mr. Darwin's testimony shows, and that before a light breeze, gives great probability to such a conjecture. It is to be noted, moreover, that the spiders arrested by the Beagle's rigging were evidently moving on when so stopped, and some of them when arrested soon resumed their flight actoss the main.

The purpose in nature of such a remarkahle habit as these well-known facts exhihit is, doubtless, to secure the distribution of species throughont wide regions. The bnoyant filament of spider-gossamer serves the tiny arachnid the same good office. that is rendered the thistle-seed by the starry rays of down surrounding it.

It may not be without interest, and may, perhaps, have some bearing upon the above theory of distribntion, to remark that the genus (or a closely allied genus) to which Sarotes venatorius be-
tion of this communication as above, and the preparation of the chart, 1 received from Mr . Wm. Holden, of Marietta, Ohio, a number of references from Koch's descriptions of Australian spiders, to which I did not have access, which enabled me to verify in this particular also the prediction made. The tables and chart have been corrected in accordance with the facts thus kindly supplied, but the above paragraphs have been permitted to stand as they were originally written and communicated to the Acadeny.
' Toyage of the Beagle, vol. iii. p. 187.
longs is probably one of the oldest known forms of the spider famma. 'Thorell' places the now existing genus Hoteroperta (Oe? pete, Koch, Oxthete, Mchge), from which Sarotes hats been divided, among those which are represented in the amber spiders. This amber is a fossil vegetable resin, which is met with in vations brown-coal strata, and is copionsly thown liy the wases on the southem eonsts of the Baltice, especially the coast of l'massia and the Kurische Ifati: This amber belongs to the tertiary (" oligescene") period, and in it munerons spiders are fomd, generall. well preserved. How far any supposed contiguity or choser approach of continents now separater might have facilitater on oceasioned the wordtromel distribution of our IIuntsman spider, is a point upon which geologists may more properly express an opinion.

The question, what variation of species, if any, ocenrs in the eourse of this distribution, is of great interest. The specimens examined by me slow no variations which may not be accounted for by differences in age, or which may not come within the range of those ordinary natural differences which all animals more or less exhibit. Most of the sjecimens, however, had been so long in alcohol as to obliterate any differences in color which might have existed. The normal color is a unform tawny yellow, varied upon the eephathorax by a circular pateh of backish of black-ish-brown color covering nearly two-thirts of the space; anch, further, by a white or whitish marginal hand quite or nearly girdling the same. In some of the specimens this circular pateh seems to have been more or less of a brownish color. The eminent naturalist Gerstaecker2 speaks of this species as distributed over a large part of Africa, Asia, and South America. Specimens were examinell hy him from Dafeta. Mombas, and Zanzibar. In these there was some variation in the coloration of the maxillary palpi: on the one hand, from a light rust-color to brownish-red and pitch-brown ; on the other ham, to a more or less sharp division or limitation of the light yellow color of the anterior and posterior borders of the cephalothorax. There was also a browning of the region abont the eyes. Gerstaceker rery justly observes that this indicates that on this sort of differences not as many

[^2]specific characters can be established as upon the more stable differences in the relative size of the eyes and legs.

A female, closely resembling the male which is here figuren, was sent to me from Tera Cruz (Tirgin Isles) by Mr. F. G. Sherman. It was taken in or near the house by one of the colored servants, who (says Mr. S.) handle the spiders readily and with impunity. The cocoon, Fig. 2, C, was inclosed in the box. It is of a piuk color; is drawn about natural size, being over threefourths of an inch in diameter. Cocoons of the same description were sent me by Mr. Jno. F. Folsom from Cuba, together with a large number of young spiderlings. These had evidently escaped from the cocoon, after immersion in the spirits. They are threethirty seconds of an inch long; whitish color, with reddish-brown annuli or regular markings upon the legs, and two rows of dots of the same color on each side of the medial line of the abdomen.

Saro'es venat rius (natural size). C. Cocoon. E. Eyes. C. Th. Outline of cephalothorax of S truncus.

The male, Fig. 2, was received from Arehibald McIntyre, Esq., who bronght it from Florifla in the winter of $1874-5.5$. It was observed for the space of five or six wecks hanging listlessly to the wall in the angle of the ceiling. It then moulted, moved, and was captured. 'The length of body is about three-quarters of an inch; the abdomen being somewhat shrivelled, its length is some-
what uncertain. One of the th pair of legs is shorter, imperfect, showing that the original leg had been lost in combat or by some acedent, and that a new leg had thas far been restored hy nature. The fact that both these specimens-the only ones in hame of whose hathits I have any accomit-were fomen in the honse would seem to indicate a fonduess for such domicile, that might make more easy the distribution of this species hy means of ships. Moreover, Latreille records, ${ }^{1}$ as a fact commmicated to him, that in certain parts of the tropical regions of the New World, this animal, insteal of heing looked upon with aversion, as are the most of its order, is regarded with positive pleasure by proprictors of homes, on accomet of the service rendered in the destruction of cockroaches and other noxions insects. For this pmpose the spider is not only preserved, but is introluced within the house. Mr. Molden has information of the same fact in comnection with this or an allied species in the Sandwich Islands. It may bee said that the general habit of the entire group of laterigrades is, however, quite different from that of house-spiders. They chiefly inhabit trees and shrubbery, upon the leaves or bark of which they lie in wait and seize their prey as from ambush. 'The spieler is probably rare, at least not abmand , in the United States. It has frequently been described in European journals; but, as it has a pace among our spider fama, a deseription is herewith appender. together with a synonymicon of the most important references.

ARANEE.

LATERIGRAD.E.

THOMISOID死.

PHILODROMINÆ.

Sarotes venatorius (Linn.), 1767.
176\%. Aranea venatoria, Limn.. Syst. Nat. (12 ed.) I. ii. p. 1035, No. 83.
1789. Arunea venatorik, Limn., syst. Nat. (13 ed.) I. p. 2960, No. 39.
1793. Araneet regia, Fabr., Entom. Syst. II. p. 40 s . Nõ. 4.

180 :. Heteropodu renatoria, Latr., Nous. Dict. d'II. N. (1st ed.) XXIV. p. 135.
180.. Thomivus lencosius, Walck., Tabl. d. Ar. p. 36, No. 28, pl. 4, fig. 33.
${ }^{1}$ Nour. Dictionnaire d'Hist. Nat., ed. 1819, tom. 34, p. 33, art. Thomixe.
1806. Thomisus venatorius, Latr., Gen. Crust. et Ins. I. p. 114.
1806. Thomisus leucosius, Latr., Gen. Crust. et Ins. I. p. 113.
1810. Arunea regia, Epit. Entom. p. 111.
1829. Thomisus leucosius, Latr., Cuvier, Regne Anim. IV. p. 250.
1833. Sarotes regius, Sund., Conspect. Arachn. p. 28.
1836. Z̈homisus leucosius, Duges, Regne Anim. Arachn. p. 60.

18:37. Olios leucosius, Walck., H. N. d. Ins Apt. I. p. 566, No. i.
1842. " Lucas, H. N. Cr. Ar. et Myr. p. 395, No. 3.
1845. Ocypete druco, C. Koch, Die Arachn. N1I. p. 44, f. 983.
1850. " C. Koch, Uebersicht, V. p. 37.
1851. Olios leucojus (leucosius), Böck, Verh. z-b. Ges. Wien, XI. p. :889. 1863 6 " Vinson, Ar. Reun. Maur. et Mad. p. 98, No. 3, 1 l. ii. f. 3.
1864. " " Simon, I. N. d. Araign. p. 410.
1866. " " Blkw., Ann. Mag. Nat. Hist. 3d ser. XVIIl. p. 457.
1870. Heteropoda venatoria, Thor., On Europ. Spid. p. 178.
1873. Olios regius, Gerst, in C. von der Decken, Reisen in Ost. Afr. III. ii. p. 482.
1875. Surotes regius, Koch, Dic Ar. Austr. pp. 660, 675, 854, Tab. 56, f. 1, 2.

Length of body, five-eightlis inch. Sprearl of legs, five inches.
Cephalothorax slightly convex, large, broad, broalest throngh the middle part, romnded on the sides, slightly truncated at the hase, very little compressed in front. The caput is but little elevated ; is truncated at the fice. The color of the spider is a uniform tawny, except upon the cephalothorax, where a broad, brownish, and black band flows down abont two-thitds the distance from the medial line to the margin. The margin of the cephatothorax is again of a tawny color, the band running arombl in front, narrowing toward the face, which it crosses just above the articulation of the falces, the color being whitish on the face. The head and eye-space are tonched with black, or are tawny. It the indentation the blackish band divides by a tawny line which follows the cephatie juncture around to the face. The eyes, Fig. $2, E$, are arranged in two rows of four each, the front row heing the shortest. The two central front eyes are the smallest of all, and are placed upon an elevation narrowing towarts the front. These are nearer to each other than are the two posterior middle eyes, from which they are separated by a space somewhat larger than that which separates the front eyes and the margin of the face. The lateral front eyes are the largest of all. Viewed from the front they are nearly in a straight line
(subrecta): but viewed from ahove they are slightly curved backwate. The batek row of eyes is about equally (perhaps even less) enrved hackwad. They are more nearly equal in size, hat the lateral eyes are larger than the midde ones. A whitish line below the eyes joins the lace with the falces, whel articulate nuarly upon a plane with the face. 'They are eonical, eovered with bristhes, rather blunt at the end, hut ent away mwand and toward each other. They have about six teeth. Lip is oval, cut synarely at the tip. Maxille are gibhons, lean toward the lip slighty, are ronnded at the end, sealloped at the middle of the outti edge, tipped with thick tooth-like hairs. Stermum corlate, tawny color, hairy. Palpus of female (Santa C'uz) loug; the joints armed with about five strong, short spines each, the terminal joint ending with a thick hrush ol bristle-like hairs, imberded within which is a fire-toothed claw. The pa!pus of the male has on the outside of the digital joint a black, double-toothed, or notehed, horn-like projection. In the palm of the terminal bulb is a back cushion, from or below the end of which projects a pinkish, spine-like organ. On the end of the radial joint withont is a black, corneons projection, curved at the extremity.

Feet, order of length, 2.4.1.3, the difference between 4.1. not very maked.

On the upper part of the thigh (femur) are arranged eight black spines, six in pairs along the upper side; two along the rery top, one of these two being in a row with the $2 d$ pair, the other standing alone near the joint of the patella. 'This last is shorter by about one-hallf, and hent more than the others. A pair of short and slight spines on the sides of the patella. On the tibia are nine spines, eight arranged in pairs below or on the under sides, the last two near the joint of metatarsus being shorter and bent; the remaining spine is between the lst and $2 d$ pairs, and above. There are five spines on the metatarsus, three shooting out well together near the joint of the thia. 'The under sides of the tarsus and metatarsus are covered with a thick scopnla. The claws are two-long, strong, eurved toward the end, toothed at the hase, apparently the inner claw having more teeth. A pad or brosh completely underlies the claws. Abdomen much shrivelled, but evidently oval. lawny, hairy, and marked as nearly as may he as in the figure.

Mabitat. Florida.

Sarotes truncus, n. sp.?

In the collection referred to in the abore paper was found one specimen which differs so widely from other individuals in the shape of the cephalothorax that it is probably entitled to be classified as a new species. The cephalothorax, Fig. $2, C . T h$, is trumcated at the base, which is the widest part, being three-cighths of an inch wide, which is also the length of the medial line of the cephalothorax. The sternum is an almost regular decagon. The eyes and other parts correspond generally with those of S. venatorius as clescribed. The view of the eyes in the figure is from above.

Female. Japan.

[^0]: ${ }^{1}$ For some observations of this habit, in full, see an article, by the writer, in Proceedings of the Academy of Nat. Sci., Philadelphia, 1877, p. 308.

[^1]: ' An error appears in the chart in the location of the sonthern limit of the South Trades. The arrow line should not run directly westward from Valparaiso, Chili (15), but from a point 100 above it, passing just south of Friendly Isles (19).

[^2]: ${ }^{1}$ European Spiders. p. 231. Nov. Acta. Reg. Soc. Sci. U'psal. 18;0. I have not the work of Kocn and Berbendt, to which Thorell refers.
 ${ }^{2}$ Von der Decken's Trarels in East Africa, III. ii. p. 48?.

